Families of algebraic structures Joint works with Loïc Foissy, Xing Gao and Yuanyuan Zhang

Dominique Manchon CNRS-Université Clermont Auvergne

Higher structures emerging from renormalization, Erwin Schrödinger Institut, October 12th 2020

キロマ キ部マネ ほど キャン

- Introduction : family Rota-Baxter algebras
- 2 Family dendriform algebras
- Family pre-Lie algebras
- 4 Marcelo Aguiar's results (2020)

5 Main results

キロマ キ部マネ ほど キャン

Family Rota-Baxter algebras Ebrahimi-Fard–Gracia-Bondía–Patras/Li Guo, 2007

• Rota-Baxter algebra : (A, R) with

$$R(a)R(b) = R(R(a)b + aR(b) + \lambda ab).$$

イロト イヨト イヨト イヨト

Dominique Manchon CNRS-Université Clermont Auvergne

Family Rota-Baxter algebras Ebrahimi-Fard–Gracia-Bondía–Patras/Li Guo, 2007

• Rota-Baxter algebra : (A, R) with

$$R(a)R(b) = R(R(a)b + aR(b) + \lambda ab).$$

• Family Rota-Baxter algebra : $(A, (R_{\omega})_{\omega \in \Omega})$ with Ω semigroup and $R_{\alpha}(a)R_{\beta}(b) = R_{\alpha\beta}(R_{\alpha}(a)b + aR_{\beta}(b) + \lambda ab).$

 First instance (EGP), coming from the momentum scheme in renormalization (with Ω = N).

ヘロト 人間 ト 人間 ト 人用 ト

æ

- First instance (EGP), coming from the momentum scheme in renormalization (with Ω = N).
- Simplest example, coming from minimal subtraction scheme (with Ω = Z) : Algebra of Laurent series A = k[z⁻¹, z]].

Rota-Baxter family algebra of weight -1, with $\Omega = (\mathbb{Z}, +)$. Here $R_{\omega} =$ projection onto the subspace $A_{<\omega}$ generated by $\{z^k, k < \omega\}$ parallel to the supplementary subspace $A_{\geq \omega}$ generated by $\{z^k, k \geq \omega\}$.

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ .

Another interesting example in weight zero : Ω = (ℝ, +), and let A be the ℝ-algebra of continuous functions from ℝ to ℝ. For any α ∈ ℝ, define R_α : A → A by

$$R_{\alpha}(f)(x) = e^{-\alpha a(x)} \int_0^x e^{\alpha a(t)} f(t) dt,$$

where *a* is a fixed nonzero element of *A*. Then $(R_{\alpha})_{\alpha \in \Omega}$ is a Rota-Baxter family of weight zero.

Family dendriform algebras X. Gao - Y. Y. Zhang

• Ω semigroup,

• $(D, \prec_{\omega}, \succ_{\omega})_{\omega \in \Omega}$ such that for $x, y, z \in D$ and $\alpha, \beta \in \Omega$,

$$(x \prec_{\alpha} y) \prec_{\beta} z = x \prec_{\alpha\beta} (y \prec_{\beta} z + y \succ_{\alpha} z),$$
$$(x \succ_{\alpha} y) \prec_{\beta} z = x \succ_{\alpha} (y \prec_{\beta} z),$$
$$(x \prec_{\beta} y + x \succ_{\alpha} y) \succ_{\alpha\beta} z = x \succ_{\alpha} (y \succ_{\beta} z).$$

・ロト ・聞 ト ・思 ト ・ 思ト

F

The free Ω-family dendriform algebra generated by a set X can be described in terms of planar binary trees with internal nodes decorated by X and edges typed by Ω (X. Gao - DM - Y. Y. Zhang).

 The free Ω-family dendriform (resp. tridendriform) algebra generated by a set X can be described in terms of planar binary (resp. Schröder) trees with internal nodes (resp. internal node angles) decorated by X and edges typed by Ω (X. Gao - DM - Y. Y. Zhang).

- The free Ω-family dendriform (resp. tridendriform) algebra generated by a set X can be described in terms of planar binary (resp. Schröder) trees with internal nodes (resp. internal node angles) decorated by X and edges typed by Ω (X. Gao - DM - Y. Y. Zhang).
- The free Ω-family Rota-Baxter algebra of weight λ generated by a set X can be described in terms of planar rooted trees with internal node angles decorated by X and edges typed by Ω (X. Gao - DM - Y. Y. Zhang).

 βx An X-decorated Ω -typed PBT

▲目▶▲圖▶▲圖▶▲圖▶

æ

An X-decorated Ω -typed PBT

An angularly X-decorated Ω -typed Schröder tree

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

 $x = \frac{z}{\alpha}$

Dominique Manchon CNRS-Université Clermont Auvergne

ヘロト 人間 ト 人間 ト 人用 ト

- Any Ω-family Rota-Baxter of weight zero (resp. one) is an Ω-family dendriform (resp. tridendriform) algebra (family version a well-known result of M. Aguiar, resp. K. Ebrahimi-Fard).
- The natural embedding of planar binary trees into planar rooted trees is the embedding of the free Ω-family dendriform algebra into its enveloping Rota-Baxter algebra of weight zero.
- The natural embedding of Schröder trees into planar rooted trees is the embedding of the free Ω-family dendriform algebra into its enveloping Rota-Baxter algebra of weight one.

- 日本 - 4 間本 - 4 間本 - 4 日本

Family pre-Lie algebras DM - Y. Y. Zhang

- Let Ω be a **commutative** semigroup.
- Left pre-Lie family algebra : $(A, (\triangleright_{\omega})_{\omega \in \Omega})$ such that

$$x \triangleright_{\alpha} (y \triangleright_{\beta} z) - (x \triangleright_{\alpha} y) \triangleright_{\alpha\beta} z = y \triangleright_{\beta} (x \triangleright_{\alpha} z) - (y \triangleright_{\beta} x) \triangleright_{\beta\alpha} z,$$
(1)

- 日本 - 4 冊本 - 4 冊本

where $x, y, z \in A$ and $\alpha, \beta \in \Omega$.

Family pre-Lie algebras DM - Y. Y. Zhang

- Let Ω be a **commutative** semigroup.
- Left pre-Lie family algebra : $(A, (\triangleright_{\omega})_{\omega \in \Omega})$ such that

$$x \triangleright_{\alpha} (y \triangleright_{\beta} z) - (x \triangleright_{\alpha} y) \triangleright_{\alpha\beta} z = y \triangleright_{\beta} (x \triangleright_{\alpha} z) - (y \triangleright_{\beta} x) \triangleright_{\beta\alpha} z,$$
(1)

where $x, y, z \in A$ and $\alpha, \beta \in \Omega$.

 If A is an Ω-family dendriform algebra with Ω commutative, it is an Ω-family pre-Lie algebra with

$$x \triangleright_{\omega} y := x \succ_{\omega} y - y \prec_{\omega} x$$
, for $\omega \in \Omega$.

 Description of the free Ω-family pre-Lie algebra generated by X in terms of X-decorated Ω-typed non-planar rooted trees.

イロト イヨト イヨト イヨト

 Description of the free Ω-family pre-Lie algebra generated by X in terms of X-decorated Ω-typed non-planar rooted trees.

イロト イヨト イヨト イヨト

・ロト ・聞 ト ・思 ト ・ 思ト

- These examples call for a general approach.
- What is a family \mathcal{P} -algebra for an operad \mathcal{P} ?

Marcelo Aguiar's approach (2020)

 Principle : A is an Ω-family 𝒫-algebra if and only if A ⊗ kΩ is a graded 𝒫-algebra.

ヘロト 人間 ト 人間 ト 人用 ト

Marcelo Aguiar's approach (2020)

- Principle : A is an Ω-family P-algebra if and only if A ⊗ kΩ is a graded P-algebra.
- The family version of an operation of arity *n* is parametrized by Ωⁿ, where Ω is the semigroup at hand :

$$\alpha(\mathbf{a}_1 \otimes \omega_1, \ldots, \mathbf{a}_n \otimes \omega_n) = \alpha_{\omega_1, \ldots, \omega_n}(\mathbf{a}_1, \ldots, \mathbf{a}_n) \otimes \omega_1 \cdots \omega_n.$$

- 日本 - 4 間本 - 4 間本 - 4 日本

Marcelo Aguiar's approach (2020)

- Principle : A is an Ω-family P-algebra if and only if A ⊗ kΩ is a graded P-algebra.
- The family version of an operation of arity *n* is parametrized by Ωⁿ, where Ω is the semigroup at hand :

$$\alpha(\mathbf{a}_1 \otimes \omega_1, \ldots, \mathbf{a}_n \otimes \omega_n) = \alpha_{\omega_1, \ldots, \omega_n}(\mathbf{a}_1, \ldots, \mathbf{a}_n) \otimes \omega_1 \cdots \omega_n.$$

- 日本 - 4 間子 - 4 同本 - 4 日本

 In particular, the natural family version of a binary operation necessitates two parameters in Ω.

Marcelo Aguiar's approach (2020)

- Principle : A is an Ω-family 𝒫-algebra if and only if A ⊗ kΩ is a graded 𝒫-algebra.
- The family version of an operation of arity *n* is parametrized by Ωⁿ, where Ω is the semigroup at hand :

$$\alpha(\mathbf{a}_1 \otimes \omega_1, \ldots, \mathbf{a}_n \otimes \omega_n) = \alpha_{\omega_1, \ldots, \omega_n}(\mathbf{a}_1, \ldots, \mathbf{a}_n) \otimes \omega_1 \cdots \omega_n.$$

- In particular, the natural family version of a binary operation necessitates two parameters in Ω.
- The semigroup Ω must be commutative unless the operad is non-sigma, e.g. Assoc, Dup or Dend.

Outline Introduction : family Rota-Baxter algebras Family pre-Lie algebras Marcelo Aguiar's results (2020) Main results

• Example : family associative algebras.

$$x \cdot_{\alpha,\beta\gamma} (y \cdot_{\beta,\gamma} z) = (x \cdot_{\alpha,\beta} y) \cdot_{\alpha\beta,\gamma} z.$$

▲目▶▲圖▶▲圖▶▲圖▶

更

• Example : family associative algebras.

$$x \cdot_{\alpha,\beta\gamma} (y \cdot_{\beta,\gamma} z) = (x \cdot_{\alpha,\beta} y) \cdot_{\alpha\beta,\gamma} z.$$

• The family associative algebra is commutative if moreover

$$x \cdot_{\alpha,\beta} y = y \cdot_{\beta,\alpha} x.$$

This immediately yields the commutativity of the semigroup Ω .

Our approach (L. Foissy - DM - Y. Y. Zhang)

 Same Principle : A is an Ω-family P-algebra if and only if A ⊗ kΩ is a graded P-algebra.

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

Our approach (L. Foissy - DM - Y. Y. Zhang)

 Same Principle : A is an Ω-family P-algebra if and only if A ⊗ kΩ is a graded P-algebra.

イロト 不得下 不足下 不足下

• But Ω need not be a semigroup : it is just a set a priori.

Our approach (L. Foissy - DM - Y. Y. Zhang)

- Same Principle : A is an Ω-family 𝒫-algebra if and only if A ⊗ kΩ is a graded 𝒫-algebra.
- But Ω need not be a semigroup : it is just a set a priori.
- the starting (linear) operad \mathcal{P} together with its presentation

$$\mathcal{P} = \mathcal{M}_{E}/\mathcal{R} = \mathbf{k}.\mathbf{M}_{E}/\mathcal{R}$$

- 日本 - 4 冊本 - 4 冊本

defines a (\mathcal{P}) -algebra structure on Ω , where (\mathcal{P}) is a set operad.

• The set operad P depends on ${\mathfrak P}$ and its presentation :

$$\mathfrak{P} = \mathbf{M}_{E}/\mathfrak{R},$$

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

where \mathbb{R} is the set-operadic equivalence relation generated by \mathbb{R} .

• The set operad P depends on ${\mathcal P}$ and its presentation :

 $\mathfrak{P} = \mathbf{M}_{E}/\mathfrak{R}$,

- 日本 - 4 間子 - 4 同本 - 4 日本

where ${\mathfrak R}$ is the set-operadic equivalence relation generated by ${\mathfrak R}.$

• If \mathcal{P} is (the linearization of) a set operad, then $\mathfrak{P} = \mathcal{P}$.

• The set operad P depends on ${\mathfrak P}$ and its presentation :

 $\mathfrak{P} = \mathbf{M}_{E}/\mathfrak{R}$,

where ${\mathfrak R}$ is the set-operadic equivalence relation generated by ${\mathfrak R}.$

- If \mathcal{P} is (the linearization of) a set operad, then $\mathfrak{P} = \mathcal{P}$.
- If 𝒫 is quadratic and if the Koszul dual 𝒫[!] of 𝒫 is a set operad, we have

$$\mathfrak{P} = \mathfrak{P}^!.$$

Upshot

Let $\mathcal{P} = \mathcal{M}_E / \mathcal{R}$ be a finitely presented linear operad, and let \mathfrak{P} be the corresponding set operad.

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

Upshot

Let $\mathcal{P} = \mathcal{M}_E / \mathcal{R}$ be a finitely presented linear operad, and let \mathfrak{P} be the corresponding set operad.

• The color-mixing operad $\widetilde{\widetilde{\mathcal{P}}}$ is a subquotient of the uniform Ω -colored operad \mathcal{P}^{Ω} .

Upshot

Let $\mathcal{P} = \mathcal{M}_E / \mathcal{R}$ be a finitely presented linear operad, and let \mathfrak{P} be the corresponding set operad.

- The color-mixing operad $\widetilde{\widetilde{\mathcal{P}}}$ is a subquotient of the uniform Ω -colored operad \mathcal{P}^{Ω} .

Upshot

Let $\mathcal{P} = \mathcal{M}_E / \mathcal{R}$ be a finitely presented linear operad, and let \mathfrak{P} be the corresponding set operad.

- The color-mixing operad $\widetilde{\widetilde{\mathcal{P}}}$ is a subquotient of the uniform Ω -colored operad \mathcal{P}^{Ω} .
- In the color-mixing operad, the color of the output is obtained by combining the *n* input colors by means of an operation of arity *n* in (P).

Thank you for your attention !

▲□▶ ▲圖▶ ▲園▶ ▲屈▶ -

更

Dominique Manchon CNRS-Université Clermont Auvergne